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Abstract. On the basis of the Kramers-Kronig relations and the dispersion equation the 
connection between the real and imaginary parts of the complex refractive indices for 
eigenwaves in weak spatial dispersion media is proposed. The theoretical description was 
applied to an experimental analysis of the amplitude-phase measurements of transmission 
spectra of semiconductor crystals near the exciton resonances. Two possibilities have been 
considered. The first is the detection of optical properties of normal waves diverted in space 
or in time. The second possibility refers to the analysis of the normal wave interference for 
plane-parallel crystals. It was shown that taking into account the interference of sup- 
plementary waves enables us to formulate the general concept and to derive the additional 
Kramers-Kronig dispersion relations and the dependence of the integral exciton absorption 
coefficient of the damping constant resulting from the influence of the spatial dispersion. 

1. Introduction 

It is known (Agranovich and Ginzburg 1979, Ginzburg and Meiman 1964) that the 
Kramers-Kronig dispersion relations (DRS) for the dielectric susceptibility tensor com- 
ponents E ( W ,  k) (U is the electromagnetic wave frequency and k is the wavevector) are 
valid in the absence of the spatial dispersion (k = 0). Nevertheless, since E ( W ,  k) is an 
analytical function of the complex wavevector components, the same DRS are applicable 
for small k-values as for k = 0 (see, e.g., Kirzhnits 1976). 

The question of the validity of these relations for the complex refractive indices is 
much more complicated. The breakdown of the DRS for ‘normal’ waves (eigenwaves) in 
the exciton spectrum region of the molecular and semiconductor crystals was pointed 
out by Brodin etaf (1959) (see also Brodin and Strashnikova 1962) and was examined in 
detail by Ginzburg and Meiman (1964) and Davydov (1962). As was shown recently by 
Moskovskii and Solov’ev (1984), some progress has been achieved in the application of 
the DRS to the exciton reflection and absorption spectra of some semiconductor crystals. 
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2. The Kramers-Kronig dispersion relations in media with spatial dispersion 

Under rather general assumptions about the properties of the equilibrium dielectric 
medium the DRS for the dielectric susceptibility tensor components eij(w, k) = 
&:I(@, k)  + ie:$(w, k )  may be written as 

From the experimental point of view it would be more interesting to derive similar 
relations containing real and imaginary parts of the complex refractive indices for normal 
waves such as tii = nl (o)  + iKl(o). One may obtain the 127 values from the solution of 
the dispersion equation (see, e.g., Agranovich and Ginzburg 1979): 

& i j S i S j A 4  - [(&qsisj)&l/ - &i[&/jsisj]12* - / E i j J  = 0 

wheres = k / / k l .  
If the spatial dispersion condition is valid, the roots of equation ( 2 )  will have singu- 

larities such as the branching points in the upper half-plane of 6. Because of this, 
relations similar to (1) cannot be obtained (Ginzburg and Meiman 1964). 

Also, within the restrictions for the weak spatial dispersion case, i.e. taking into 
account only the low-order terms in the eij(k) expansion 

e i j (w ,  k)  = &!(CO) + iyijl(o)kl + aql , (w)klk ,  + . . . (3) 

one may use (1) to obtain certain relations between the set of nl and K /  values. 
First it should be noted that the DRS of type (1) are valid for all E ! ,  yLlr, aIIlm tensor 

values. This must be taken into account for phenomenological determination of these 
parameters. Substituting (3) into (2), one may obtain the algebraic equation for 12:.  Its 
order is determined by the number of the terms in the representation (3). The coefficients 
of this equation are expressed by the series with positive terms for E ! ,  ySl, aglm or their 
products and are consequently analytical functions of w, having no singularities at 
Im 0 0. Because of this, a relation such as equation (1) may be written for every 
coefficient of equation (2). 

If equation (2) is of the order N with respect to I?’, N coefficients of it (as they are 
the complex functions of w) will be determined by the real parts of ri2. In this case, only 
N functions from 2N real functions nl, will be independent. One may determine the 
others (as well as the coefficients in (3)) using the known relations between the roots of 
the algebraic equation and its coefficients. 

The problem of the determination of the possible 12f values from the real and 
imaginary parts of the tensors E O ,  y ,  a seems relatively simple and may be transformed 
into the problem of construction of the unknown parts of these functions using the 
Kramers-Kronig relations and equation ( 2 ) .  However, it is difficult to find out the 
coefficients in (3) from N given values of nr(w) and K [ ( w )  or their independent com- 
binations. 
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For the simple case of an isotropic ( E ;  = ~ ~ 8 ~ ~ )  and non-gyrotropic (yiii = 0) medium, 
the equation for the normal refractive indices f i f  X I  = X i  + iX;l will take the form 

P - A(&', a ) X  + B(E', (U) = 0 (4) 
where A and B are the known analytical functions of E and a (Agranovich and Ginzburg 
1979); the frequency dependence of E and a are not determined. Also, the functions 
X i  ( U )  and X i  (U) are expressed as 

X1 + X 2  = (Xi + X i )  + i(X[ + Xi) = A 

XlX2 = (XiX; - X ; l X i )  + i(X;Xi + XiX;) = B. 
( 5 )  

Using the first equation of the Kramers-Kronig relations, one may find Xy + X ;  and A .  
The application of the Kramers-Kronig relations to the second equation leads to a 

non-linear integral equation of second order with a Coshy-type kernel. Its solution 
enables us to determine approximately the properties of the medium (i.e. E' and a). 

The increase in the order of equation ( 2 )  causes an increase in the degree of non- 
linearity of the equation and only an excess of data, as a rule, facilitates this problem. 
In particular, if in the above-mentioned case three functions Xi , X i  and Xy are primarily 
determined, the construction of the X; function may be carried out directly by the use 
of the Kramers-Kronig relations. 

The same approach is valid for the analysis of the properties of medium, if equations 
(1) are written in terms of E ; ' .  

Thus, we proposed a new method for solution of the problem connected with the 
study of properties of media with spatial dispersion (nl(o)  and K ~ ( w ) ) .  This approach is 
supported by calculations performed for the isotropic non-gyrotropic medium model in 
the vicinity of the isolated absorption line (Agranovich and Ginzburg 1979). These 
calculations showed satisfactory stability of the solution with respect to the experimental 
errors of the extrapolated values of nI(co) and K [ ( w )  obtained in the region far from the 
absorption line. 

The above-mentioned considerations may be applied to the experimental results to 
determine the refractive indices and absorption coefficients of two normal waves 
diverted in space after light transmission through wedge-shaped crystals of CdS 
(Lebedev et a1 1984) and the use of the laser pulse technique (Segawa et a1 1978). 

3. Additional Kramers-Kronig relations taking into account interference of sup- 
plementary waves 

Other experimental possibilities appear when spatial and temporal diversion of sup- 
plementary waves are of no interest. This situation arises in the study of thin plane- 
parallel crystal transmission spectra near the exciton resonances. 

Let us analyse the problem for hexagonal crystals of the CdS type with the optical 
axis lying in the plane of the plate. Expressions for the refractive indices for p-polarised 
waves for mixed excitons are as follows (Permagorov et a1 1973): 

f i :  = E R  + sin2 q (1 - &I/&:) + A  k [A2  + (&RmLT sin2 ~ ) / E : P ~ ] ~ / ~  (6) 
where 1 = 1 and 1 = 2 correspond, respectively, to + and - before the square root in (6); 

A = {w - w L  + iy - P L [ & I  + sin2 cp (m:/m,T - ~ 1 7 / & ) ] } ( 2 / 3 ~ ) - ~  

PI= hw2/2m:c2.  
(7) 
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~ f l ,  E? andmlr , m T are the background dielectricsusceptibilities and the effectivemasses 
of exciton for the light vector k 11 c6 and k I c6; Q, is the incident angle; OLT is the 
longitudinal-transverse splitting; oL is the longitudinal exciton frequency; c is the 
velocity of light. 

For the isotropic case ( E  i c6; k I c6) the refractive indices will be expressed as 

(8) f i 2  - - E O  + B .t (B’ + EOWLT//~)~/~ 

where 

B = (U - OT + iy - /3~0)(2/3)-’ .  (9) 

w,is the transverse excitonfrequency; .so = n$ is the backgrounddielectricsusceptibility; 
no is the background refraction index; y is the exciton damping constant. Later for the 
transverse excitons the definitions /3 = PI and c0 = E? will be used. 

For the total wave which is the result of the light-exciton wave interference one has 
for the isotropic case 

E ( z )  = E l ( z )  + E 2 ( z )  =Eol{exp[i(w/c)filz] +qexp[i(w/c)ri2z]} (10) 

where z is the thickness of the crystal; E,,  E2 are the normal waves with the refractive 
indices f i l  andA2, respectively; fi1,* = nl,’ + iK1,*; Eo, = E l  Ir=Ois the wave amplitude E l  
on the crystal surface; 

do) = Iq(((.’) I exp[i@(o>l = [E’ (w)/E1(w>l I z = o .  

The q(w)-value represents the ratio of the complex amplitude of the E,(w) wave to that 
of the E2(w)  wave on the first crystal surface and is determined by the supplementary 
boundary conditions; @(U) is the phase of q(w). 

One may write the effective refractive index n* as 

E(z )  = Eol (1 + q )  exp[i(w/c)ri*z] f i *  = n* + iK*. (11) 

The transmission function will take the form (Moskovskii and Solov’ev 1984) 

e(@ = exp[i(wT/c)(fi* - no)z].  (12) 

In this case the effective refractive index depends on z.  As was shown by Moskovskii 
and Solov’ev (1984), the transmission function as well as its logarithm are the analytical 
functions in the upper part of the complex plane Z+(h) except the zero points. In the 
classical case, as Nussenzweig (1972) pointed out, the transmission function cannot be 
zero because the refractive index is not z dependent. 

So the additional DRS may be written as (Moskovskii and Solov’ev 1984) 

where Ooj = woj + iyoj corresponds to the zero values of the transmission function in 

For practical use of the additional DRS (i.e. for the determination of the transmitted 
light phase using the absorption spectrum) the coordinates hOi must be calculated. 

I+(&) .  
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Neglecting the reflection from the second plane of the crystal, one may represent e( 0) = 
0 by a system of two equations: 

where j = 1,2,3,  . . ., N .  
The number of the roots of the N-equation system and its values depend on the 

crystal thickness. 
Taking into account the interference of many light beams does not lead to significant 

complication of the calculations. The substitution of the amplitude and phase of the 
functions q(l)(cij’) instead of I q I and @(6) gives 

q(l)(ci)) = jq(cij) Iri2{exp[2i(oT/c)rilz] - l}/ril{exp[2i(~,/c)ri2z] - I}. (15) 

The set of solutions for two-beam approximation may be taken as the zero approxi- 
mation. The problem for the mixed exciton mode is solved in the same way using (6). 

It should be emphasised that violation of the classical DRS arises not only because of 
the spatial dispersion. Therefore the analysis of experimental data, as we believe, may 
be performed using the dependence of the integral exciton absorption coefficient (IEAC) 
on the damping constant in a study of the amplitude-phase spectra. The latter problem 
has been solved in a number of theoretical and experimental studies (see, e.g., Nkoma 
1980, Akhmediev 1980, Akhmediev et a1 1983). 

4. Integral exciton absorption coefficient 

In the classical case for the absorption lines in gases, liquids and solid bodies the integral 
absorption coefficient S(y)  is determined as the square under the spectral absorption 
coefficient curve and does not depend on y .  Nevertheless, experiment shows (Crescenzi 
et a1 1979, Voight 1974) a considerable decrease in IEAC in the low-temperature region 
of the crystal which may be caused by the influence of spatial dispersion. The dependence 
of S(U) is a possible reason for this effect (Agranovich and Ginzburg 1979). Because of 
this the observation of the IEAC dependence of y cannot serve as proof of the spatial 
dispersion effect. 

We believe that correct data on the IEAC dependence of y and the DRS would clarify 
the situation. Experiments of this type have been carried out recently only for quadrupole 
exciton line in Cu02  crystals (Moskovskii and Solov’ev 1984). The connection between 
these phenomena becomes evident when we consider that, from the critical damping 
constant ycr = ~ ( E ~ w ~ ~ @ ) ~ / ~  (for the transverse exciton) the IEAC becomes independent 
of y. Here ycr corresponds to the exciton damping constant when the term in parentheses 
in (8) is equal to zero. Then the dispersive branches ril(w) and ri2(w) cross at the point 
h,, = U,, + iy,, and the supplementary wave amplitude becomes very small. The IEAC 
attains the &,-value and for y > ycr it does not change. For the same ycr the classical 
Kramers-Kronig relations are valid. The explanation of this is that for y > ycr the role 
of the supplementary wave interference is neglected. 
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i K  t 

Figure 1. Integration contour and the positions (0) 
for the zeros Q,,. 

The IEAC is expressed as (Akhmediev 1980) 

2 
S ( y , z )  = - - Re ( In e( U ,  2) d U )  

Z 

X / l C !  

Figure 2. The ir:Ac for CdS crystals with z = 
0.3 mm: -, calculations from (22) for the 
transverseexcitons ( E  I C 6 ; k  l.Ch);---, cal- 
culations by Akhmediev (1980) using the pnr- 
ameters U-, = 2.5527 eV, = 0.001 86 eV, 
E\ = 8.3 and mr = 0.9mo (where mi, is the 
electron mass). 

where the absorption coefficient has the form K ( w )  = ( ~ w ~ / c ) K ( w ) .  Thus we have 
2 e’ 

S(y ,z )  = - R e ( l m  w k d w ) .  
-cc Z 

This integral may be calculated from the analytical expansion of the function in i+(d). 
Fixing the integration contour at the infinity we consider the integral 

e’ 
e I =  /c (6 - i y ) - d d .  

The contour C consists of the linear part CL for which Im ir, = y and semicircular part 
CR in I ,  with a radius R and centre on the real axis (figure 1). Thus, we have Z = 
ZL + ZR. For R + a, S = (2/2) Re ZL = (2 /z)  Re(Z - Z R )  and ZR = 27~iZ,(ci)~, - iyo,), 
where do, = wo, + iyo, is simply the coordinates of the zeros of the transmission function 
determined above. 

The use of the dimensionless variables q where q = (CO - wT - P E ~ ) ( ~ P ) - ~  helps us 
to calculate the integral ZR (Akhmediev 1980). In this case, part of integration contour 
CR will be transferred in the semicircular curve CR1 in Z+(q) with a radius Rl  = R/2P and 
a centre point rl = 0; so we have 

(18) 

In the limiting case, R1+ integration may be performed along all the semi-circular 
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contour neglecting the part between the real axis and the linear part of the integration 
path. Transforming the variable q = R1 exp(ig), we have 

et 

e I R  = iR1 lon [2PR1 exp(ig) + wT + P E O  - iy) -dq .  

In the R I  -+ w limit all the terms in equation (19) may be neglected except the first. 
Sufficient accuracy for W/e is of order R i 2  I Thus, for the W/o-value, one obtains 

e t /e  = iawTz/4cn& exp(2ig) (20) 

where 

Finally, I R  can be expressed as 

I R  = - J T ~ ~ o J T z / ~ c ~ ~  (21) 

and is in accordance with the results obtained by Akhmediev (1980). This result is 
evident because of the small influence of the supplementary waves in the region far from 
the exciton resonance. 

As a result, we have 

It is clear that, to obtain the IEAC dependence on y, we should determine only the 
imaginary coordinates of the transmission zeros. This formula enables us to calculate 
accurate valuesfor the IEAcfor arbitrary values of 2 (figure 2, full curve). The calculations 
carried out by Akhmediev (1980) were made using the approximation of one-wave full 
absorption (see figure 2, broken curve). Also, the calculations accomplished in this work 
show that, for y = 0, S(y, z )  + S,, when 2 -+ 0 but, according to Akhmediev (1980), 
S(y) = 0 for every z .  For large z-values the S(y, 2)-dependences calculated using (22) 
and by Akhmediev (1980) coincide with rather good accuracy. 

The above approach for transverse excitons is also valid for mixed excitons. In this 
case the critical damping constant ycr and the critical frequency w,, may be calculated 
from (6) and (7 ) .  These values correspond to the crossing point of the dispersive branches 
for the waves l i l (w)  and li2(0) and are expressed by 

where 

The dependences of ycr (curve A) and U,, (curve B) for CdS crystals for mixed excitons 
are presented in figure 3. 
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'p l d e g l  

I . . , . l . . . .  

I 0.1 0 2  
h~ I m e V I  

Figure 3. The angular dependences of the critical 
damping constant ycr (curve A) and the critical 
frequency U,, (curve B) in CdS crystals for mixed 
excitons with the parameters wT = 2.5527 eV, 
wLT=0.00186eV, E\ =8.3, ~ / / , = 9 . 0 ,  my = 
0.9m0 and mli = 5m0 (where ma IS the electron 
mass). 

For mixed excitons, equation (22) takes the form 

Figure 4. The y-dependence of the IEAC in CdS 
crystals for mixed excitons: curve A, p = 25"; 
curve B, p = 45"; curve C, p = 65"; curve D, 
p = 80". The calculations were performed using 
the same parameters as in figure 3. 

where 

a = sin2 q / P L e !  E = ~ 1 7  + sin2 q (I - E l / . $ ) .  

The angular dependences of S(y) for CdS crystals for mixed excitons are represented in 
figure 4. These numerical results from (24) are in rather good agreement with the 
experimental data obtained by Novikov et aZ(1986). 

5. Conclusions 

In conclusion, the application of the Kramers-Kronig relations to media with spatial 
dispersion has been studied. The advanced theory may be applied to the experimental 
analysis of the amplitude-phase measurements of semiconductor crystal transmission 
spectra near the exciton resonances. Two possibilities have been considered. The first 
is the detection of optical properties of normal waves diverted in space or in time (i.e. 
in wedge-shaped crystals or for a pulsed technique). The second possibility is the analysis 
of the normal wave interference for plane-parallel crystals. In this case on the basis of 
an analysis of the analytical properties of the transmission function it is possible to 
derive the additional Kramers-Kronig relations accounting for the supplementary wave 
interference. On the contrary, using the same theoretical description the dependence 
of the IEAC on the damping constant may be explained. 
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